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This paper discusses two classification models, one
based on concept formation and the other using stan-
dard logistic regression. The models are first explained
in some detail and then evaluated on the same popula-
tion of trauma patients. The goal of both systems is to
predict the outcome of those patients. The results are
summarized and explained in terms of differing algo-
rithms ofthe two models.

INTRODUCTION

The purpose of this study was to compare two models

for predicting death in trauma patients, one based on
logistic regression and the other utilizing concept for-
mation, an artificial intelligence approach to classifica-
tion. While logistic regression is an accepted standard
for quantifying classification "power" of a given data
set, concept formation is a novel method which provides
more flexibility in dealing with data sets containing
incorrect or missing data as well as a large number of
variables.

By comparing the two methods the authors have hoped
to better understand the elements of trauma that contrib-
ute the most to death of affected patients. If successful,
this study may eventually lead to suggestions that will
both improve the quality and reduce the cost of care of
trauma patients by promoting the procedures that
address the most critical aspects of the patients injury.

The remainder of this paper will provide a brief descrip-
tion of the two models, followed by an explanation of
obtained results and their interpretation.

CONCEPT FORMATION

Concept formation is a machine learning technique for

summarizing known instances in the form of tree/hierar-
chy. An instance is defined as any object, event, or place
that can be described in terms of attribute/value pairs.
Concepts are then represented as intermediate nodes
whose description provides a summary of all instances
stored in the corresponding subtrees. Ideally, all
instances which lead to the same consequence would be

grouped in the same branch of the tree. After a tree is
obtained, it can then be used to predict the classification
of new instances.

In order to be effective, concept formation systems need
to be unsupervised and incremental. The term unsuper-
vised indicates that there is no teacher to decide on

either the number or identity of the concepts to be

learned by the system. Consequently, the system is pro-
vided with examples of the classes to be formed, but
without any indication as to which class those examples
belong to. The system is expected to uncover not only
the classes themselves, but their description and sub-
class structure as well. Such an approach is well suited
for domains which are not completely understood due to

their complexity and/or incomplete information. Medi-
cine is an example of a domain where much remains to

be explained despite the fact that a tremendous effort

already has been invested in it.

The term incremental, on the other hand, indicates that

examples/instances are acquired one at a time. While it
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is certainly possible to form concepts by looking at all
instances at once, such an approach would not be advis-
able in the context of medical decision making where
each medical practitioner can build his/her own decision
tree, i.e. a hierarchy of categories, from his/her own pre-
vious cases. This patient base keeps growing over time
and it would be impractical to store a full description of
all instances. The system should rather keep a descrip-
tion of all intermediate nodes and some informative
(typical and not so typical) cases. Also, its real-time use
suggests that the system should incorporate new cases
into an existing tree rather than regenerate the whole
tree from scratch.

influence of the features of a not shared by b. The func-
tion is derived from the contrast model (Tversky, 1977),
which defines similarity as a linear combination of com-
mon and distinctive attribute/value pairs, features.

s(A, B) = sim(A,B) + sim(B, A)
2

(Eq 1)

sim(A,B) = c(A, B)-d(A B)
c(A,B) + d(A,B)

cm(a) =
s

(2
(Eq 2)

For the purpose of this study we used INC2.5, a system
developed by Hadzikadic and his collaborators (Hadz-
ikadic, 1991, 1992a, 1992b; Hadzikadic and Yun, 1989;
Bohren and Hadzikadic, 1994). INC2.5 is an example of
an incremental concept formation tool. A node in the
INC2.5 tree has a description consisting of the following
data: name of the node, list of attributes and associated
values, measure of cohesiveness, number of children,
and number of instances stored under this class. Each
node has an identical list of attributes. For each attribute
the node will store all values found in its instance
descriptions. A node containing a single instance will
have zero or more values associated with each attribute.
A class node is identical in structure to an instance node,
but contains the union of all instance values stored
under it. When a value occurs more than once, the num-
ber of occurrences of the attribute value in that branch
of the tree is displayed in the attribute list. Upon calcu-
lating the similarity between two instances, the two
attribute lists are compared and return a number reflect-
ing both distinctive and common features.

The main components of INC2.5 are the class-member-
ship evaluation function and the tree-searching algo-
rithms. The evaluation function can be broken into two
components, similarity and cohesiveness. As shown in
Equation 1, the similarity of two nodes is based on the
comparison between the two sets of attribute/value
pairs, where c(A,B) represents the contribution of the
common features of a and b; d(A,B) introduces the

sp(a) = sp(O)+ 2(JK X x lkl .,. (i, j, k E Ga)
J, k

Cohesiveness measures the average similarity of all
pairs of instances contained in a class. Equation 2 is the
formula used to calculate cohesiveness, where Ga repre-
sents the set of all children of a and lal equals the num-
ber of instances stored under a. It ranges from 1.0 to -

1.0. Cohesiveness reflects the similarity between all
instances under a given node. In the special case where
the node is an instance, singleton, the value of the cohe-
siveness is irrelevant. However, for INC2.5's evaluation
function a singleton is assumed to have a cohesiveness
of 0.0. A class node will have a cohesiveness measure of
1.0 if and only if all of its children are identical. On the
other hand, a node in which the children are completely
opposite would have a cohesiveness measure of -1.0.

INC2.5 uses six operators during the tree building
process: create, extend, merge, delete, pull-in, and pull-
out. Create forms a new class for an instance found to be
dissimilar to all examined classes, while extend adds a
new instance to the most similar class found. Merge and
delete combine and divide classes based on the effect of
a new instance. For example, if a new instance is similar
to half of the children in a class then a new class will be
formed by merging the most similar children and
recursively classifying the new instance into the new
class. The most sinilar children are defined here as
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those children whose degree of similarity with the new

instance is within a windowW of the most similar child.
The default value of W is set to 75%. The delete
operator is used to undo the consequences of an
unsuccessful merge operation. Pull-in and pull-out

operators are also introduced to help correct previous
misclassifications, although at the finer level of detail
than the delete operator. They are applied when the
system is updating the path from the newly placed

instance to the root.

LOGISTIC REGRESSION

Logistic Regression is a statistical model that allows for
a quantitative relationship for a dichotomous event that

depends upon several independent variables. Cornfield
(1962) proposed this model in predicting coronary heart

disease. The outcome (dependent) variable must have
only two choices, e.g. occurs or not, alive or dead, etc.
The independent variables can be either on the interval
or nominal scale. This mathematical model predicts the

probability of outcome of an eventp with k independent
variables x1, x2,..., xk according to the following equa-
tion:

p (eventlX) =
1

+e (Bo+Bl xl+B2 x2 +...+Bk xk)

Any nominal scale variable must first be re-parameter-
ized so that an individual variable xi is either on the
interval scale or dichotomous.

A brief description will be given of how the coefficients

Bi are calculated. For more details see Cox (1970) or

Agresti (1990). The method used is a standard one that
is used in many statistical models. It is known as the
method of maximum probability estimation. If the event
is survival then the probability that the ith individual
survives is

pi (eventlXi) =

1+-(Bo +B1 xli+B2 x2i+ ...+Bk xki)

and the probability that the ith individual dies is just 1-

Pi.

The probability function is simply the product of the

individual pjs for those individuals that survive multi-
plied by those qis for those individuals that die. The
assumption of independence, i.e. the occurrence of the
event in one person is completely independent from the

occurrence of an event for another individual, allows
one to multiply the individual probabilities. With this

method, one would like to choose the values of the B

coefficients so as to make the probability function a

maximum for this particular sample of people. From
calculus, the maximum values for a set of equations
with unknowns is found by taking the partial derivatives
and setting them equal to zero. Since the logarithm is a

monotonically increasing function, the maximums for

the logarithm of a function will be the same as for the

original function. In this case it is easier to calculate the

derivatives for the natural logarithm of the probability
function and then take the partial derivatives. However,
the set of equations obtained by taking derivatives and

setting them to zero is not solvable algebraically
because they are not linear with respect to Bs. A numer-

ical method of iteration known as Newton-Raphson
method can be used to solve the set of probability equa-

tions.

qi (event Xi) =

1
(Bo + B1 xl i + B2 x2i + ... + Bk xki)

EVALUATION

In order to evaluate the two methods described in the

previous sections, data was extracted from a trauma reg-
istry database comprised of information on all trauma

patients admitted to a Level I Trauma Center. Two-thou-
sand-one-hundred-fifty-five records, representing all
trauma patients admitted in 1992 for more than 24 hours
or who died in the Emergency Department, were

grouped into two databases as follows: (1) discharge sta-

tus of "died" (containing 151 records), and (2) any dis-

charge status other than "died" (containing 2004
records). Both databases contained the same variables:
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age; initial temperature; Glasgow Coma Scale (GCS)
along with its three component subscores (eye opening,
verbal response, motor response); initial Trauma Score

(TS) in the Emergency Department; coded description
of safety equipment in use by the victim at the time of
the trauma; coded description of airway management
procedures used; coded results of peritoneal lavage,
abdominal CT scan, head CT scan, and angiogram;
alcohol level; initial hematocrit; concurrent medical his-

tory (grouped into one of 10 general categories); Injury
Severity Score (ISS); and whether drug screens were

done or not and, if so, whether sedatives, opiates,
cocaine, marijuana, and/or benzodiazepines were

present. The two databases were then linked into a sin-
gle dataset containing 2155 records, of which the first
151 patients died and the remainder survived.

To generate a systematic selection of patient records to

be used for the development of prediction models, each
record number not evenly divisible by 10 was placed
into a training database containing 1940 records. Infor-
mation regarding patient discharge status in the training
set was used by the investigators to generate their pre-
diction models.

The records of the remaining 10% of patients (those
whose record numbers were evenly divisible by 10)
were placed into a test database containing 215 records.
The discharge status variable of these records was

deleted, so the investigators could test the efficacy of the
two prediction methods while blinded to the patient's
outcome. The investigators were also blinded to the
record selection criteria.

The SAS software package was used to perform the
logistic regression procedure and determine the coeffi-
cients. After the initial run, interactions that take into
account products of two variables were added to the
model. The model was run in stepwise manner that only
entered variables that added a significant improvement
in predicting the probability of surviving. Table 1 con-
tains the coefficients for those variables that the logistic
determined to be of value in predicting survival using
the training set. Then, using these coefficients and the

independent variables for each person in the test set, a

probability of survival for each individual in the test set

was calculated. If the probability was determined to be

greater than 50%, it predicted that they had survived,
else that they had died.

TABLE 1.Logistic Regression Coefficients

Variable Coef. P-value

intercept -3.2725

age between 21 and 40 1.3525 0.0002

eye opening = 2 1.5342 0.0256
(Glasgow Coma scale)
eye opening = 3 -1.7873 0.0042

initial trauma score 0.5881 0.0001

airway management -1.5564 0.0007
(EMS intervention)

airway management -2.5203 0.0001
(ER intervention)
head CT scan=positive) 0.9459 0.0079

head CT scan=negative 2.939 0.0001

cardiac complications -0.9126 0.0196

interaction between Injury -0.00785 0.0001
Severity Score and Initial
Trauma Score

INC2.5, an artificial intelligence classification tool, was
run on SUN SPARC workstation using C/C++ language.
Out of the training data set provided to the investigators,
a new subset was created by pulling in the records of all
patients who died and an equal number of randomly
selected alive patients. We used this pool of records to
generate a learning curve by creating decision trees of
size 10, 20, ..., 200 and subsequently evaluated their
predictive ability by testing the obtained decision tress
on the set-aside subset of 70 records. For each run the
training and testing sets were randomly selected. A tree
of size 100 proved to be the best "performer." This tree
was then used for the final evaluation of the method.

The results of the predictive evaluation of the two meth-
ods are summarized in Table 2 (LR stands for logistic
regression and CF stands for concept formation).

201



TABLE 2 Predictive Evaluation Results

Predicted Actual Outcome

Outcome Lived Died
Lived (LR) 198 4
Died (LR) 2 11
Lived (CF) 185 2

Died (CF) 15 13

Total 200 15

The sensitivity and specificity information is given in
Table 3.

TABLE 3 Sensitivity and Specificity Results

Method Sensit. Specific.
Logistic Regression 0.733 0.99

Concept Formation 0.867 0.925

DISCUSSION

Tables 2 and 3 reveal mixed results. Although both sys-
tems performed reasonably well, Logistic Regression
achieved better performance in terms of specificity,
whereas Concept Formation scored better on the sensi-
tivity measure. In addition, Concept Formation had a
lower standard deviation with respect to those two mea-
sures. Due to INC2.5's ability to build decision trees in
an automated fashion, unlike logistic regression which
requires some manual tuning, the authors did not do any
direct comparison of time required to build models.

In general, Concept Formation offers a more flexible
method of dealing with situations where noisy data is
expected to be classified in three or more outcome
classes. This method not only generates a decision tree,
but it also provides a summary description of each inter-
mediate node formed in the decision tree. Such informa-
tion can be useful in situations where an explanation of
the system recommendation is likely to be requested by
the user.

In conclusion, it is clear that each system has something
to offer to the medical community. More specifically,
Logistic Regression provides a well defined formal
method of analyzing complex classification domains,
while Concept Formation adds flexibility and ability to
successfully cope with incorrect and incomplete data.
Consequently, we are hoping to look into the issues of
combining the two methods into a single tool in the near
future.
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